12(1), June 2021, pp. 95-113

Research progress of indium sulfide-based semiconductor regulation and photocatalytic performance

Chao Liu^a, Fengjun Zhang^{a,b*}, Chunmei Kai^a, Weiqin Cai^a, Cui Kong^a

^aKey Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei Anhui, 230601, P. R. China. ^bAnhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei Anhui, 230022, P. R. China.

Abstract: With the development, environmental problems and energy shortages have become increasingly prominent. Photocatalysis is an ideal way to solve these two problems. In_2S_3 is a highly efficient semiconductor material, which has attracted wide attention because of its suitable band gap (2.0eV-2.2eV), good light absorption ability, good electron migration ability and low toxicity. However, In_2S_3 itself has some other problems, such as the photo-corrosion condition in the photocatalytic process and the photocatalytic hydrogen evolution performance of pure indium sulfide is not particularly excellent. This article mainly introduces the crystal structure of In_2S_3 . In_2S_3 was prepared by different methods, and the morphology was adjusted to optimize the photocatalytic performance of In_2S_3 . In addition, the photocatalytic degradation and hydrogen production ability of In_2S_3 was enhanced by forming a heterojunction.

Keywords: In₂S₃; morphology control; heterojunction; photocatalysis; degradation; hydrogen production

1. Introduction

Nowadays, the increasingly serious environmental pollution and the globalization of the energy crisis have attracted more and more attention ^[1, 2]. The method of using solar energy to split water to produce hydrogen by photocatalysis on semiconductors is one of the most effective ways to obtain clean and recyclable energy to replace traditional fossil fuels^[3, 4]. Since the 1870s, Japanese scientists Fujishima and Honda discovered that n-type semiconductor TiO₂ can decompose water to obtain hydrogen under external radiation^[5], Photocatalytic hydrogen production has been deeply studied by researchers in related fields. But TiO₂ itself has many shortcomings, its band gap is 3.2 eV ^[6]ÿit can only absorb light in the ultraviolet region (<400nm). But ultraviolet light only accounts for 5% of sunlight, and visible light (400nm~780nm) accounts for 47% of the sun's largest proportion^[7]. The light-absorbing ability of light mainly depends on their band

^{*} Corresponding author: fjzhang@ahjzu.edu.cn

gap^[8]. Therefore, synthesizing a narrow band gap visible light-responsive semiconductor photocatalyst is the current research direction in the field of photocatalysis.

With the in-depth research in the field of photocatalysis, people have discovered that metal sulfides are a potential semiconductor material, and they have a suitable narrow band gap^[9, 10]. Therefore, it can absorb visible light and has a strong absorption capacity in the visible light region. As a kind of III-IV group semiconductor compound, In_2S_3 has a band gap of 2.0eV-2.2eV^[11, 12]. Like other metal sulfides, In_2S_3 has suitable band gap position, exposed active sites, high light energy utilization, chemical stability and strong photocatalytic activity ^[9, 13-15]. Compared with other toxic metal sulfide semiconductors (CdS), In_2S_3 is almost non-toxic ^[16].

This article mainly introduces the five different crystal types of In_2S_3 , such as defect cubic structure, defect spinel structure, layered hexagonal structure, phase rhomboid structure, phase cubic defect structure, and distinguish different morphological features through different dimensions; Use a variety of methods such as chemical bath deposition, hydrothermal, solvothermal and chemical vapor deposition to prepare In_2S_3 , and combine it with other semiconductors to form different heterojunctions (such as: type I, type II, p-n type , Z-type heterojunction) to enhance the hydrogen production efficiency of In_2S_3 photocatalyst.

2. Preparation and Experimental procedures

In₂S₃ has five crystal forms. Under standard atmospheric pressure, α -In₂S₃ with defective cubic structure, β -In₂S₃ with defective spinel structure and γ -In₂S₃ with layered hexagonal structure can be prepared under standard atmospheric pressure. These three different crystals, the structure mainly depends on different temperatures ^[17-19]. Figure 1 is the crystal structure diagram of the above three In₂S₃^[20]. Below 420°C, the tetragonal β -In₂S₃ can maintain a stable structure. When it exceeds 420°C, the tetragonal β -In₂S₃ will transform into cubic β -In₂S₃ and cubic α -In₂S₃. The layered hexagonal structure of γ -In₂S₃ appears above 750°C. Under high pressure, ϵ -In₂S₃ with phase rhomboid structure and Th₃P₄-In₂S₃ with phase cubic defect structure can be prepared^[21]. Among the above five different crystal structure types of In₂S₃, β -In₂S₃ is the only n-type semiconductor among the three stable In₂S₃ crystal states^[11,22,23], it has a cubic or tetragonal structure^[24], because of its stable chemical properties at room temperature and strong visible light Absorptive capacity and low toxicity tend to attract the attention of scientific researchers^[25].

Different preparation methods will have a certain impact on the physical and chemical properties of the material, so it is very important to choose a suitable method to prepare the required material. In_2S_3 preparation methods include chemical bath deposition, hydrothermal, solvothermal and chemical vapor deposition.

Chemical bath deposition method: The chemical bath deposition method is a chemical reduction process that uses a suitable reducing agent to reduce metal ions in the plating solution and deposits on the surface of the substrate. It is usually used to prepare metal sulfide films. This reaction usually occurs between dissolved precursors in a low-temperature aqueous solution. C.D. Lokhande et al ^[26] reported a method for preparing In_2S_3 thin films by chemical bath deposition. In this synthesis method, the synthesis effect of the In_2S_3 film is affected by the concentration ratio of indium and sulfide ions and the temperature. High-quality In_2S_3 film can be obtained when the molar ratio of indium ion to sulfide ion reaches 1:5 and the temperature is 50!-70!.

Hydrothermal method: Hydrothermal method refers to a method in which powder is dissolved in water and recrystallized under high temperature and high pressure in a specific sealed environment. Under subcritical and supercritical hydrothermal conditions, since the reaction is at the molecular level, the reactivity is high. The hydrothermal method can be traced back to geologists' research on simulating mineralization in nature in the middle of the 19th century. After 1900, scientists established the theory of hydrothermal synthesis, and then began to study functional materials. The hydrothermal method has the advantages of low cost, simple operation, and easy control of reaction conditions. It is also one of the good methods for preparing In₂S₃. Cui et al ^[27] combined In₂S₃ and Bi₂MoO₆ by hydrothermal method to form a heterojunction. The type of heterojunction formed after measurement was type a!. The existence of In₂S₃ made the In_2S_3/Bi_2MoO_6 heterojunction absorb sunlight. Compared with Bi_2MoO_6 , it has a significant red shift and a stronger response to photocurrent, which helps to enhance the photocatalytic activity of the composite heterostructure. Fu et al ^[28] also used the hydrothermal method to simultaneously prepare the tetragonal (T-In₂S₃) and cubic (C- In_2S_3) â- In_2S_3 , and found T- In_2S_3 with better crystallinity and stronger visible light absorption. C-In₂S₃, which has no photocatalytic hydrogen production activity but relatively poor crystallinity and weak visible light absorption, has stable activity. This phenomenon is attributed to the fact that $T-In_2S_3$, which has ordered indium cation vacancies, is further affected by photogenerated electron migration than that which is solely affected by indium ion vacancies.

The solvothermal method is similar to the hydrothermal method. It is a synthetic method in which organic solvents or non-aqueous solvents are reacted at a certain temperature and pressure. It differs from the hydrothermal method in that the solvent used is organic instead of water. Liu et al ^[29] reported an ultra-thin β -In₂S₃ nanotube prepared by solvothermal method. The outer diameter of the nanotube is 10-20nm, the wall thickness is about 2nm, and the length is greater than 1µm. Compared with the bulk In₂S₃, the ultraviolet absorption band of the prepared nanotube In₂S₃ has a blue shift.

Chemical vapor deposition is an effective preparation method for preparing metal sulfides. In the preparation process, the reactants are first vaporized, and then transferred to the deposition area, and finally chemical reactions are carried out on specific materials to produce the required Material method. Hang et al ^[30] reported a method for preparing two-dimensional In_2S_3 nanosheets by chemical vapor deposition for the first time. Compared with one-dimensional In_2S_3 nanowires prepared by chemical vapor deposition, two-dimensional In_2S_3 nanosheets are more suitable for manufacturing complex structural components. The advantage of chemical vapor deposition method is that it can obtain higher purity two-dimensional In_2S_3 nanosheets, and the prepared nanosheets have a wide range of light response from visible light to near infrared.

Adjusting the morphology of In_2S_3 is an effective way to improve its photocatalytic hydrogen evolution ability, as shown in Figure 2, according to the different morphology and structure , In_2S_3 can be divided into zero-dimensional structure (E.g. Nanoparticles

^[31, 32])ÿOne-dimensional structure (E.g: Nanowires ^[33-35], Nano stave ^[36], Nanotube ÿÿTwo-dimensional structure (E.g: Nanosheets ^[37, 38]) and three-dimensional structure (E.g: Nano flower ^[39-41]ÿHollow microspheres ^[42, 43]

Figure 2 (a) SEM image of In₂S₃ nanoparticles ^[31]; (b) SEM image of In₂S₃ nanowire ^[33]; (c) SEM image of In₂S₃ nanorods ^[36]; (d-e) TEM image and HRTEM image of In₂S₃ nanosheet ^[38]; (f) TEM image of In₂S₃ nanoflower ^[39] (g-h) SEM and TEM images of In₂S₃ nanoflowers ^[40]; (g-h) SEM and TEM images of In₂S₃ nanoflowers ^[41]; (J-k) FESEM and TEM images of In₂S₃ hollow microspheres ^[42]

3. Results and discussion

3.1 0 $D In_2S_3$

Zero-dimensional structure refers to a material whose three dimensions are all in the nanometer size (1-100nm). Because surface atoms account for a large proportion, the surface state density of the structure is greatly increased, so the influence of various quantum effects is very significant.

Zhang et al ^[32] used continuous ion layer adsorption and reaction to prepare In_2S_3 nanoparticles by depositing In_2S_3 nanoparticles on TiO₂ nanotubes to obtain In_2S_3/TiO_2 composites. Through diffuse reflectance spectroscopy, it is found that compared with pure TiO₂ nanotubes, the In_2S_3/TiO_2 heterostructure shows an excellent visible light response, which is stronger in the visible light region and improves the utilization of sunlight. And the photocurrent density is significantly increased, indicating that the transfer of photogenerated electrons is faster. Xia et al ^[31] used a simple hydrothermal

synthesis method to grow In_2S_3 nanoparticles in situ on graphene as a growth substrate. The prepared graphene/ In_2S_3 composite material is used for the anode of the battery and has better cycle life and cycle stability. The prepared GIS composite material can still maintain a certain capacity of about 1000mV h g⁻¹ after being recycled for more than 200 times. The composite of graphene and In_2S_3 also significantly improved the morphology and phase stability of In_2S_3 .

3.2 1 D In2S3

One-dimensional materials generally refer to linear materials in which atoms are regularly arranged to the order of centimeters in one direction and few atoms are arranged in the other two directions. One-dimensional materials have great application prospects and utilization values in nanomaterials, and they play a key role in nanoelectronics and optical devices. One-dimensional structures also have good effects in the field of photocatalysis.

Afzaal et al ^[36] reported for the first time that an In_2S_3 film composed of In_2S_3 nanorods was prepared by using [Et₂In(S₂CNMeⁿBu)] as a precursor and using aerosol-assisted chemical vapor deposition to avoid the generation of high temperature and toxic substances. The preparation of one-dimensional In_2S_3 nanorods has opened up a new path.

3.3 2 $D In_2S_3$

Two-dimensional materials refer to materials in which electrons can only move freely on the nanometer scale in two dimensions of 1-100nm ^[44].Two-dimensional materials have a large specific surface area and can provide more active sites, thereby enhancing the ability of photocatalytic hydrogen production. If the nanoparticles are combined with the two-dimensional photocatalyst, the agglomeration of the nanoparticles can be avoided, which is conducive to the transfer of charges, which helps to improve the activity and stability of the photocatalyst^[45].

Chen et al ^[37] reported a one-step solvothermal method to prepare a composite photocatalyst composed of Bi_2S_3 nanoflowers and In_2S_3 nanosheets. This synthesis is based on the different growth rates of these two sulfides. The relatively slow-growing ultra-thin In_2S_3 is formed by the relatively fast-growing Bi_2S_3 as the growth substrate. The introduction of In_2S_3 greatly improves the light absorption capacity of the Bi_2S_3/In_2S_3 complex, increases the charge transfer rate, and improves the effective separation of electron-hole pairs, which makes its photocatalytic activity compared to pure In_2S_3 and pure In_2S_3 . The Bi_2S_3 has been greatly improved, and the stability of its photocatalytic activity after several cycles has also been enhanced.

Li et al ^[38] used the atomic layer deposition method to uniformly wrap ZnO in the sheet-like In_2S_3 to form a core-shell structured In_2S_3/ZnO composite. The optical properties of In_2S_3/ZnO can be controlled by adjusting the thickness of the coated ZnO. When the thickness of ZnO reaches 50nm, In_2S_3/ZnO presents the best appearance.

Compared with the In_2S_3 nanosheet array without ZnO, the In_2S_3/ZnO composite exhibits stronger light absorption capacity and is accompanied by a red shift of the absorption peak. The photocurrent density and incident photocurrent efficiency at 380nm are also 70 and 160 times that of the original In_2S_3 nanosheet array, respectively. The II heterojunction structure formed by In_2S_3 and ZnO is also the reason for improving the transfer and separation of photogenerated carriers.

3.4 3 $D In_{2}S_{3}$

Three-dimensional nanostructure refers to a composite material composed of one or more basic structural units in zero-dimensional, one-dimensional, and two-dimensional^[46]. Electrons can move freely in three non-nano-sized dimensions, and usually have a relatively regular morphology and a relatively large specific surface area.

Chen et al ^[40] used indium chloride and L-cysteine as indium source and sulfur source to synthesize a highly dispersed cubic flower-like In_2S_3 assembled from nanosheets through self-assembly. The diameter of the prepared flower-shaped In_2S_3 is about 400nm, and the thickness of the In_2S_3 nanoflake of the structure is about 10nm. Adjusting the pH of the solution during the preparation process will also affect the morphology and structure of In_2S_3 . In_2S_3 that has not been adjusted for pH will form larger particles, and an excessively large pH value will cause In_2S_3 to have more flower-like patterns. The scattered, it is difficult to gather. The ultra-high specific surface area of In_2S_3 and the mid-frequency absorption range of visible light may bring development to the direction of photocatalysis.

Liu et al ^[42] prepared a cubic phase β -In₂S₃ with a hollow nano-spherical morphology structure by a two-step solvothermal method, with an outer diameter of 70nm and a shell thickness of 20nm. After UV diffuse reflectance and PL tests, it is found that the peak position of bulk In₂S₃ on the market shifts to the UV region. It can be explained as the quantum confinement effect of the hollow nano-spherical morphology on β -In₂S₃.

3.5 Indium sulfide-based semiconductor heterojunction

Indium sulfide is very suitable as a semiconductor material for photocatalytic hydrogen evolution because of its suitable band gap width and suitable band gap position. The bottom of the conduction band in pure In_2S_3 is at -0.8V, which is more negative than the redox potential of H⁺ at 0V ^[47], the top of the valence band is located at 1.5V, which is slightly positive compared to the redox potential of O₂. This makes the band gap position of In_2S_3 sufficient to ensure that water can be split to produce hydrogen ^[21]. When applied to photocatalytic degradation, the position of the valence band or conduction band of the semiconductor is more positive or negative relative to the redox potential of the pollutant to be degraded.

There are many ways to improve the photocatalytic activity of semiconductor photocatalysts, such as morphology control, crystal plane control, element doping, dye sensitization, and semiconductor recombination. Among them, the method of compounding with a semiconductor to construct a heterojunction is a feasible and most commonly used method to improve the performance of In_2S_3 . In particular, the charge separation efficiency can be enhanced by a heterostructure. There are four types of reported In_2S_3 -based photocatalytic heterojunctions. Types: type I, type II, p-n type and Z type heterojunction.

3.6 In,S₃-based type I heterojunction

For type I semiconductors (as shown in Figure 3), the conduction band and valence band positions of semiconductor A are higher and lower than those of semiconductor B, respectively. Therefore, the electrons and holes of semiconductor A under light irradiation They are all transferred to the conduction band and valence band of semiconductor B. Electrons and holes gather on the same semiconductor at the same time, which also leads to easier recombination of electrons and holes^[48].

Straddling gap (type-I)

Figure 3: Type I semiconductor [48]

Ma et al [49] reported a new type of transition metal carbide Mo_2C and In_2S_3 composite photocatalyst prepared by hydrothermal method. The composite of Mo_2C and In_2S_3 forms a type I heterojunction (as shown in Figure 4a). When the content of Mo_2C reaches 30%, the maximum hydrogen production performance of Mo_2C/In_2S_3 nanocomposites is 535.58 µmol h⁻¹ g⁻¹, which is 175.6 times of the original pure In_2S_3 . When Mo_2C and Pt account for 1% of In_2S_3 , the Mo_2C/In_2S_3 composite also has 2.68 times higher photocatalytic hydrogen production performance than the Pt/In₂S₃ composite. It is not difficult to see from the PL diagram (Figure 4b) that this result can be attributed to the sheet-to-sheet structure providing more or active sites for the transfer of photogenerated electrons and the type I heterogeneity composed of Mo_2C and In_2S_3 . Mass junction reduces the recombination rate of electron-hole pairs.

Figure 4: (a) Mo_2C/In_2S_3 electron migration and separation mechanism diagram; (b) In_2S_3 , Mo_2C and $Mo_2C-In_2S_3$ heterojunction photocatalysts photoluminescence spectra at an excitation wavelength of 350 nm^[49]

Yang et al [50] reported a simple hydrothermal process to synthesize type I coreshell In_2O_3/In_2S_3 nanostructures under mild conditions (Figure 5a). Adjust the amount of In_2S_3 compared to In_2O_3 by changing the hydrothermal temperature. When the temperature is controlled at 60°C and 90°C (as shown in Figure 5b), the In_2S_3 content increases with the increase in temperature. When the hydrothermal temperature reaches 120°C When In_2O_3 is completely converted to In_2S_3 . When the temperature is 90!, the effect of In_2O_3/In_2S_3 hydrogen evolution of vegetation is the best.

Figure 5: (a) TEM image of the core-shell structure of In₂O₃/In₂S₃ obtained at 90°C; (b) Schematic diagram of the band gap position of the I-type core-shell structure ^[50]

3.7 $In_{3}S_{3}$ base type a! heterojunction

For type II heterojunction (Figure 6), the conduction band position of semiconductor A is higher than that of semiconductor B, and the valence band position of semiconductor B is lower than that of semiconductor B. This results in the accumulation of electrons and holes. Semiconductors, so compared to type I semiconductors, type II semiconductors can better realize the separation of electrons and holes ^[48].

Staggered gap (type-II)

Figure 6: Type a! heterojunction [48]

Liu et al.^[51] used a simple in-situ oxidation method to prepare a hydrangea-like In_2S_3/In_2O_3 photocatalyst with layered voids (Figure 7a). The In_2S_3/In_2O_3 heterostructure obtained by annealing the In_2S_3 prepared by hydrothermal method at 450! has the highest photocatalytic activity, and the hydrogen generation rate reaches 683.8 µmol g⁻¹ after 5 hours of irradiation. Compared with pure In_2S_3 and pure In_2O_3 , the photocatalytic performance is increased by 2.56 times and 3.48 times, respectively (Figure 7b), Liu obtained the bandgap width of In_2S_3 and In_2O_3 from the absorption spectrum according to the Kubelka-Munk equation, where the band gap width of In_2S_3 is 2.16 eV, and the band gap width of In_2O_3 is 3.09eV. XPS valence spectroscopy measured the valence band widths of In_2S_3 and In_2O_3 to be 1.32V and 2.35V, respectively. In_2S_3 and In_2O_3 form a type II heterojunction, and the electrons in the conduction band of In_2S_3 are transferred to In_2O_3 , the holes in the valence band of In_2O_3 are transferred to In_2S_3 (Figure 7c). This greatly promotes the separation of charges and holes and reduces the recombination of electron-hole pairs.

Figure 7: (a) Synthesis process of In₂S₃/In₂O₃ heterostructure; (b) In₂S₃, In₂O₃ and In₂S₃/In₂O₃ samples annealed at different temperatures for photocatalytic hydrogen desorption; (c) In₂S₃/In₂O₃ heterojunction photocatalysis Schematic diagram of hydrogen escape mechanism ^[51]

Dan et al ^[52] successfully prepared In_2S_3/CuS metal sulfide composite material by hydrothermal method. In_2S_3 and CuS form a type II heterojunction (Figure 8a). The photocatalytic hydrogen production efficiency of In_2S_3/CuS composite material can reach 14950 µmol g⁻¹ h⁻¹ (Figure 8b). The combination of In_2S_3 and CuS improves the light absorption ability of the composite material and promotes the separation ability of photogenerated carriers.

Figure 8: (a) Photocatalytic process of In₂S₃/CuS composite material splitting H₂S under visible light irradiation; (b) Photocatalytic hydrogen generation rate of these samples under visible light irradiation ^[52]

3.8 In₂S₃-based p-n heterojunction

This type of heterojunction is composed of a p-type semiconductor and an n-type semiconductor compound (Figure 9). Before being exposed to light, at the contact surface of the two semiconductors, the electrons on the n-type semiconductor diffuse to the p-type semiconductor until the system reaches the Fermi level balance. At this time, a built-in electric field is formed at the contact surface. When exposed to light, the p-type and n-type semiconductors obtain sufficient energy, and the electrons are excited from the valence band position to the conduction band position, and due to the existence of the built-in electric field, the electrons gathered at the conduction band position of the p-type semiconductor The accumulated holes are accelerated to transfer the conduction band position of the n-type semiconductor. Compared with type II and type I heterojunctions, p-n type heterojunctions have stronger electron-hole separation ability^[48].

Figure: 9 p-n type heterojunction [48]

Hua et al ^[53] constructed $La_2Ti_2O_7/In_2S_3$ composite photocatalyst by electrostatic self-assembly of $La_2Ti_2O_7$ which is a p-type semiconductor and In_2S_3 which is an n-type semiconductor. There is a strong Coulomb static force between the negatively charged In_2S_3 and the positively charged $La_2Ti_2O_7$ in DMF, which makes the two materials tightly combined. $La_2Ti_2O_7$ and In_2S_3 have the best photocatalytic hydrogen production when the mass ratio is 7.5:1.0, which is 3.5 times the original In_2S_3 hydrogen production (Figure 10a). In_2S_3 and $La_2Ti_2O_7$ with different semiconductor types in order to balance the Fermi energy level will cause band bending and provide an additional electric field (Figure 10b). The p-n heterojunction composite photocatalyst can improve the photocatalytic performance by providing an additional electric field and thus by accelerating the electron hole migration of the heterojunction.

Figure: 10 (a) The average hydrogen production rate of different samples, "Mix" represents the physical mixture of La₂Ti₂O₇ and In₂S₃ (mass ratio 7.5:1.0), "LTO" represents La₂Ti₂O₇; (b) La₂Ti₂O₇/In₂S₃ nanosheet heterojunction energy Belt structure model ^[53]

Wang et al^[54] synthesized SnS_2/In_2S_3 p-n heterojunction using a one-pot hydrothermal method for photocatalytic reduction of Cr^{6+} to Cr^{3+} . The Cr^{6+} photocatalytic reduction efficiency of $15\% SnS_2/In_2S_3$ is 3 times and 67 times that of pure In_2S_3 and SnS_2 , respectively (Figure 11a). It was found that the sample can reduce Cr^{6+} under the condition of ph less than 11, which provides a way to reduce Cr^{6+} under alkaline conditions. Electron spin resonance (ESR) detection was also carried out to understand the migration path of photogenerated electrons, and finally the heterojunction type was p-n type semiconductor in type II (Figure 11b).

Figure: 11(a) Photoreduction efficiency of In₂S₃, SnS₂ and SnS₂/In₂S₃ heterostructures for Cr⁶⁺ reduction; (b) Schematic diagram of electron transfer path in composite system. Type II p-n heterojunction ^[54]

3.9 In₂S₃-based Z-type heterojunction

Although the first three types of heterojunctions have improved the separation of electrons and holes to varying degrees, they are all transferred to the relatively lower conduction band and valence band positions after they are excited by light. The redox ability of semiconductor heterojunctions has been weakened. The advantage of Z-type heterojunctions (as shown in Figure 12) is that on the basis of type II heterojunctions, electrons accumulated in relatively positive conduction band positions are directly transferred to relatively relatively high conduction bands. At the negative valence band position, the electron holes react in the more positive or negative valence band and conduction band position, retaining the stronger redox ability of the two semiconductors ^[48].

Figure: 12Z-type heterojunction [48]

Zhang et al ^[55] reported a ternary Z-type heterojunction photocatalyst prepared from graphene, WO₃ and In₂S₃. The In₂S₃/WO₃/rGO photocatalyst prepared by the one-pot hydrothermal method combines rod-shaped WO₃ and flake-shaped In₂S₃ on graphene. As shown in Figure 13a, the photoexcited electrons in the conduction band of WO₃ are transferred to the valence band of In₂S₃, which makes the In₂S₃/WO₃/rGO photocatalyst retain the high conduction band position of In₂S₃ and lower WO₃ compared to pure In₂S₃ and WO₃. The position of the valence band makes it have strong redox ability. As a result, when the molar ratio of In₂S₃ to WO₃ is 1:1, In₂S₃/WO₃/rGO has the highest visible light photocatalytic activity, and the hydrogen production performance reaches 1524 µmol g⁻¹ h⁻¹ (Figure 13b). The rGO nanosheets act as an effective charge linker and transporter in the In₂S₃/WO₃/rGO ternary nanocomposite, which contributes to the good distribution of In₂S₃ and WO₃ on the body and effective contact on graphene. The Z-type heterostructure also improves the separation rate of electrons and holes.

Figure: 13 (a) A model of In₂S₃/WO₃/rGO tertiary nanocomposite as a photocatalyst of the Z scheme (top), with a schematic energy diagram for photocatalytic water splitting (bottom); (b) In 0 under visible light irradiation , In 25, In 50, In 75, In 100 nanocomposites and the H₂ precipitation rate of the mixture of In₂S₃ nanosheets and WO₃ nanorods.^[55]

Hu et al ^[56] used a hydrothermal method to prepare the $In_2S_3/BiOBr$ heterojunction for the degradation experiment of the organic dye Rhodamine B, by changing the content of In_2S_3 to achieve the best degradation efficiency. Compared with the nanosheets of pure BiOBr, the prepared composite material presents a nanoflower structure with a diameter of about 4im (Figure 14a-b). The degradation effect of rhodamine B is 4.75 times and 11.26 times that of pure BiOBr and TiO₂ P25 catalysts (Figure 14c). As shown in Figure 14d, through the capture experiment to study the active free radicals in the photocatalytic process, it is found that superoxide radicals and holes are the free radicals that play a major role in the photocatalytic process. In addition, the increase in superoxide radicals measured by the measured ESR under light indicates that the type of heterojunction is a Z-type heterojunction (Figure 14e).

Figure: 14FESEM images of the prepared samples: (a) pure BiOBr, (b) In₂S₃/BiOBr-0.2; (c) photodegradation curve of RhB dye; (d) trapping experiment of In₂S₃/BiOBr-0.2; (e) Schematic diagram of the photocatalytic process of In₂S₃/BiOBr composite ^[56]

4. Conclusions and perspectives

In this review, the advantages of In_2S_3 when used as photocatalytic hydrogen production materials are discussed. In_2S_3 itself is non-toxic, coupled with excellent structure and optical advantages, so that it has an extremely broad application prospect in photocatalysis. The suitable narrow band gap (2.0eV-2.3eV) makes it possible to become a semiconductor photocatalyst. After absorbing enough light energy, the electrons in the valence band obtain enough energy to undergo transition and transfer to the conduction band. The electrons in the conduction band and the holes in the valence band are transferred to the surface of the material for reduction and oxidation respectively.

reaction. Even though the photocatalytic performance of In_2S_3 itself is superior, it still has some problems, such as the photocorrosion of the photocatalyst itself and the recombination of photogenerated electron-hole pairs during the photocatalytic reaction. In order to further improve the photocatalytic hydrogen production capacity of In_2S_3 , you can adjust the morphology of In_2S_3 (such as 0D nanoparticles, 1D nanowires, nanorods, 2D nanosheets, 3D nanoflowers, etc.), and you can also use A method of recombining with other semiconductor materials to produce a heterojunction. However, even if the photocatalytic performance of In_2S_3 is optimized through the above methods, its research on photocatalytic hydrogen production still faces various challenges.

The following will talk about the problems of In_2S_3 in the direction of photocatalytic hydrogen production and possible better research directions from several directions. As an excellent optical device material, In_2S_3 is widely used in the application of photoelectric catalytic hydrogen production only in terms of the preparation of high-efficiency and clean hydrogen energy. However, the research on hydrogen production through the catalytic reaction of light energy is relatively small so far. Combining In_2S_3 with some new materials for heterojunction may be a very promising research direction, such as black phosphorus, titanium carbide (Ti_3C_2) in Mxene materials and so on. The elaboration of the photocatalytic mechanism of In_2S_3 is not comprehensive at present. It is reflected in the transfer mechanism of photogenerated carriers, as well as the dynamics and thermodynamics of the semiconductor surface. More theoretical calculations and atomic research are needed.

Reference

- [1] R. Bariki, D. Majhi, K. Das, A. Behera, B.G. Mishra, Facile synthesis and photocatalytic efficacy of UiO-66/CdIn₂S₄ nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H2 evolution, Applied Catalysis B: Environmental, 270 (2020)118882.
- [2] P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, W. Sen, C. Sun, J. Qin, X. Shi, X. Bao, Alkalized Ti₃C₂ MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries, Nano Energy, 40 (2017) 1-8.
- [3] Waheed Iqbal, Bocheng Qiu, Qiaohong Zhu, Mingyang Xing, J. Zhang, Self-Modified Breaking Hydrogen Bonds to Highly, Applied Catalysis B: Environmental, 232(2018)306-313.
- [4] Bo Chai, Tianyou Peng, P. Zeng, J. Mao, Synthesis of floriated In₂S₃ decorated with TiO₂ nanoparticles for efficient photocatalytic hydrogen production under visible light, Journal of Materials Chemistry, 38(2011) 14587–14593.
- [5] F. AKIRA;, K. HONDA, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.
- [6] H. Tsuji, N. Sakai, H. Sugahara, Y. Gotoh, J. Ishikawa, Silver negative-ion implantation to sol-gel TiO₂ film for improving photocatalytic property under fluorescent light, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 237(2005) 433-437.
- [7] Xiaobo Chen, Shaohua Shen, Liejin Guo, S.S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation, Chemical Reviews, 110 (2010) 6503-6570.
- [8] G.M. Tomboc, B.T. Gadisa, J. Joo, H. Kim, K. Lee, Hollow Structured Metal Sulfides for Photocatalytic Hydrogen Generation, ChemNanoMat, 6 (2020) 850-869.

- [9] S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond, Chem Soc Rev, 48 (2019) 4178-4280.
- [10] J Tan, M. Yu, Z. Cai, X. Lou, J Wang, Z. Li, MOF-derived synthesis of MnS In₂S₃p-n heterojunctions with hierarchical structures for efficient photocatalytic CO₂ reduction, J Colloid Interface Sci, 588 (2021) 547-556.
- [11] A. Davoodi, M. Maddahfar, M. Ramezani, Application of mercaptoacetic acid as a capping agent, solvent, and precursor to fabricate In2S3 nanostructures, Journal of Industrial and Engineering Chemistry, 22 (2015) 368-372.
- [12] W. Sheng, Y. Song, M. Dou, J. Ji, F. Wang, Constructing 1D hierarchical heterostructures of MoS₂/In₂S₃ nanosheets on CdS nanorod arrays for enhanced photoelectrocatalytic H₂ evolution, Applied Surface Science, 436 (2018) 613-623.
- [13] H. Xu, Y. Wang, X. Dong, N. Zheng, H. Ma, X. Zhang, Fabrication of In₂O₃/In₂S₃ microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation, Applied Catalysis B: Environmental, 257 (2019)117932-117941.
- [14] C. Wei, W. Guo, J. Yang, H. Fan, J. Zhang, W. Zheng, Facile solvothermal synthesis of 3D flowerlike â-In,S₃ microspheres and their photocatalytic activity performance, RSC Adv., 4 (2014) 50456-50463.
- [15] Y. Pi, S. Jin, X. Li, S. Tu, Z. Li, J. Xiao, Encapsulated MWCNT@MOF-derived In₂S₃ tubular heterostructures for boosted visible-light-driven degradation of tetracycline, Applied Catalysis B: Environmental, 256 (2019)117832.
- [16] Marie Buffière, Nicolas Barreau3, Guy Brammertz, S. Sahayaraj, M.M., J. Poortmans, Development of Co-evaporated In₂S₃ Buffer Layer for Cu2ZnSnSe4 Thin Film Solar Cells, Institute of Electrical and Electronics Engineers, 42(2015)1-4.
- [17] J. Li, Y. Ma, Z. Ye, M. Zhou, H. Wang, C. Ma, D. Wang, P. Huo, Y. Yan, Fast electron transfer and enhanced visible light photocatalytic activity using multi-dimensional components of carbon quantum dots@3D daisy-like In₂S₃/single-wall carbon nanotubes, Applied Catalysis B: Environmental, 204 (2017) 224-238.
- [18] R. Bayon , J. Herrero, Structure and morphology of the indium hydroxy sulphide thin films, Applied Surface Science, 158 (1999) 49-57.
- [19] X. Lai, F. Zhu, Y. Wu, R. Huang, X. Wu, Q. Zhang, K. Yang, S. Qin, New high-pressure polymorph of In₂S₃ with defect Th₃P₄-type structure, Journal of Solid State Chemistry, 210(2014) 155-159.
- [20] Y. Sharma, P. Srivastava, Electronic, optical and transport properties of á-, â- and ã-phases of spinel indium sulphide: An ab initio study, Materials Chemistry and Physics, 135 (2012) 385-394.
- [21] J. Zhang, H. Wang, X. Yuan, G. Zeng, W. Tu, S. Wang, Tailored indium sulfide-based materials for solar-energy conversion and utilization, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 38 (2019) 1-26.
- [22] W. Wang, W. Zhu, L. Zhang, A facile preparation and visible light-induced photocatalysis of indium sulfide superstructure, Research on Chemical Intermediates, 35 (2009) 761-767.
- [23] C. Huang, Y. Hong, X. Yan, L. Xiao, K. Huang, W. Gu, K. Liu, W. Shi, Carbon quantum dot decorated hollow In₂S₃ microspheres with efficient visible-light-driven photocatalytic activities, RSC Advances, 6 (2016) 40137-40146.
- [24] B. Ma, M. Yue, P. Zhang, S. Li, R. Cong, W. Gao, T. Yang, Tetragonal â-In₂S₃: Partial ordering of In³⁺ vacancy and visible-light photocatalytic activities in both water and nitrate reduction, Catalysis Communications, 88 (2017) 18-21.
- [25] P. Ghaderi Sheikhi abadi, M. Salavati-Niasari, F. Davar, Hydrothermal synthesis, characterization and optical properties of 3D flower like indium sulfide nanostructures, Superlattices and Microstructures, 53 (2013) 76-88.
- [26] C. D. Lokhande*, A. Ennaoui, P.S. Patil1, M. Giersig, K. Diesner, M.M., H. Tributsch, Chemical bath

deposition of indium sulphide thin ®lms: preparation and characterization, Thin Solid Films 340 (1999) (1999) 18-23.

- [27] H. Cui, S. Dong, K. Wang, M. Luan, T. Huang, Synthesis of a novel Type-II In₂S₃/Bi₂MoO₆ heterojunction photocatalyst: Excellent photocatalytic performance and degradation mechanism for Rhodamine B, Separation and Purification Technology, 255 (2021)117758.
- [28] X. Fu, X. Wang, Z. Chen, Z. Zhang, Z. Li, D.Y.C. Leung, L. Wu, X. Fu, Photocatalytic performance of tetragonal and cubic â-In₂S₃ for the water splitting under visible light irradiation, Applied Catalysis B: Environmental, 95 (2010) 393-399.
- [29] G. Liu, X. Jiao, Z. Qin, D. Chen, Solvothermal preparation and visible photocatalytic activity of polycrystalline â-In,S, nanotubes, CrystEngComm, 13 (2011) 182-187.
- [30] W. Huang, L. Gan, H. Yang, N. Zhou, R. Wang, W. Wu, H. Li, Y. Ma, H. Zeng, T. Zhai, Controlled Synthesis of Ultrathin 2D â In₂S₃ with Broadband Photoresponse by Chemical Vapor Deposition, Advanced Functional Materials, 27 (2017)1702448-1702456.
- [31] X. Yang, C.Y. Chan, H.T. Xue, J. Xu, Y.-B. Tang, Q. Wang, T.L. Wong, C.-S. Lee, One-pot synthesis of graphene/In₂S₃ nanoparticle composites for stable rechargeable lithium ion battery, CrystEngComm, 15 (2013)6578-6584.
- [32] Z. Zhang, Y. Tang, C. Liu, L. Wan, Fabrication of In₂S₃ nanoparticle decorated TiO₂ nanotube arrays by successive ionic layer adsorption and reaction technique and their photocatalytic application, J Nanosci Nanotechnol, 14 (2014) 4170-4177.
- [33] X. Xie, G. Shen, Single-crystalline In₂S₃ nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse, Nanoscale, 7 (2015) 5046-5052.
- [34] X. H. Sun1, and Boon K. Teo3, Zero-Dimensional Nanodots on One-Dimensional Nanowires: Reductive Deposition of Metal Nanoparticles on Silicon Nanowires, Journal ofCluster Science, 15 (2004) 119-224.
- [35] M. Zervos, P. Papageorgiou, A. Othonos, High yield-low temperature growth of indium sulphide nanowires via chemical vapor deposition, Journal of Crystal Growth, 312 (2010) 656-661.
- [36] M. Afzaal, M.A. Malik, P. O'Brien, Indium sulfide nanorods from single-source precursor, Chem Commun, (2004) 334-335.
- [37] Y. Chen, G. Tian, Q. Guo, R. Li, T. Han, H. Fu, One-step synthesis of a hierarchical Bi₂S₃ nanoflower \In₂S₃ nanosheet composite with efficient visible-light photocatalytic activity, CrystEngComm, 17 (2015) 8720-8727.
- [38] M. Li, X. Tu, Y. Wang, Y. Su, J. Hu, B. Cai, J. Lu, Z. Yang, Y. Zhang, Highly Enhanced Visible-Light-Driven Photoelectrochemical Performance of ZnO-Modified In₂S₃ Nanosheet Arrays by Atomic Layer Deposition, Nanomicro Lett, 10 (2018) 45-57.
- [39] M. Han, L. Yu, W. Chen, W. Wang, J. Jia, Fabrication and photoelectrochemical characteristics of In₂S₃ nano-flower films on TiO₂ nanorods arrays, Applied Surface Science, 369 (2016) 108-114.
- [40] Li-Yong Chen, Zu-De Zhang, W.-Z. Wang, Self-Assembled Porous 3D Flowerlike â-In₂S₃ Structures: Synthesis, Characterization, and Optical Properties, J. Phys. Chem, C 2008, 112, (2008) 4117-4123.
- [41] S. Yang, C.Y. Xu, B.Y. Zhang, L. Yang, S.P. Hu, L. Zhen, Ca(II) doped beta-In₂S₃ hierarchical structures for photocatalytic hydrogen generation and organic dye degradation under visible light irradiation, J Colloid Interface Sci, 491 (2017) 230-237.
- [42] Y. Liu, M. Zhang, Y. Gao, R. Zhang, Y. Qian, Synthesis and optical properties of cubic In₂S₃ hollow nanospheres, Materials Chemistry and Physics, 101 (2007) 362-366.
- [43] A.K. Nayak, S. Lee, Y. Sohn, D. Pradhan, Synthesis of In₂S₃ microspheres using a template-free and surfactant-less hydrothermal process and their visible light photocatalysis, CrystEngComm, 16 (2014)8064-8072.
- [44] H. Pan, Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting, Renewable and Sustainable Energy Reviews, 57 (2016) 584-601.

- [45] R. Tong, K.W. Ng, X. Wang, S. Wang, X. Wang, H. Pan, Two-dimensional materials as novel cocatalysts for efficient solar-driven hydrogen production, Journal of Materials Chemistry A, 8 (2020) 23202-23230.
- [46] M.J. Bierman, S. Jin, Potential applications of hierarchical branching nanowires in solar energy conversion, Energy & Environmental Science, 2 (2009)1005-1120.
- [47] B. Sun, F. Shan, X. Jiang, J. Ji, F. Wang, One-pot synthesis of MoS₂/In₂S₃ ultrathin nanoflakes with mesh"shaped structure on indium tin oxide as photocathode for enhanced photo-and electrochemical hydrogen evolution reaction, Applied Surface Science, 435 (2018) 822-831.
- [48] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction Photocatalysts, Adv Mater, 29 (2017)1601694-1601714.
- [49] X. Ma, C. Ren, H. Li, X. Liu, X. Li, K. Han, W. Li, Y. Zhan, A. Khan, Z. Chang, C. Sun, H. Zhou, A novel noble-metal-free Mo₂C-In₂S₃ heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H2 evolution under visible light, J Colloid Interface Sci, 582 (2021) 488-495.
- [50] X. Yang, J. Xu, T. Wong, Q. Yang, C.S. Lee, Synthesis of In₂O₃-In₂S₃ core-shell nanorods with inverted type-I structure for photocatalytic H₂ generation, Phys Chem Chem Phys, 15 (2013) 12688-12693.
- [51] M. Liu, P. Li, S. Wang, Y. Liu, J. Zhang, L. Chen, J. Wang, Y. Liu, Q. Shen, P. Qu, H. Sun, Hierarchically porous hydrangea-like In₂S₃/In₂O₃ heterostructures for enhanced photocatalytic hydrogen evolution, J Colloid Interface Sci, 587(2020)876-882.
- [52] A. Prakash, M. Dan, S. Yu, S. Wei, Y. Li, F. Wang, Y. Zhou, In₂S₃/CuS nanosheet composite: An excellent visible light photocatalyst for H₂ production from H2S, Solar Energy Materials and Solar Cells, 180 (2018) 205-212.
- [53] E. Hua, S. Jin, X. Wang, S. Ni, G. Liu, X. Xu, Ultrathin 2D type-II p-n heterojunctions La₂Ti₂O₇/In₂S₃ with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination, Applied Catalysis B: Environmental, 245 (2019) 733-742.
- [54] L. Wang, S.K. Karuturi, L. Zan, SnS₂-In₂S₃ p-n heterostructures with enhanced Cr⁶⁺ reduction under visible-light irradiation, Applied Surface Science, 537 (2021)148063-148072.
- [55] Q. Zhang, M. Luo, Y.P. Sun, Y. Liu, A. Cao, Efficient Z-scheme photocatalyst from simultaneous decoration of In₂S₃ nanosheets and WO₃ nanorods on graphene sheets, Nanotechnology, 27 (2016) 285602-285610.
- [56] M. Hu, A. Yan, F. Li, F. Huang, J. Huang, Q. Cui, X. Wang, Z-scheme indium sulfide/bismuth oxybromide heterojunctions with enhanced visible-light photodegradation of organics, Applied Surface Science, 547 (2021)149234-149243.

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/